Package: modgo (via r-universe)

September 13, 2024

```
Title MOck Data GeneratiOn
Version 1.0.1
Date 2022-03-09
Maintainer George Koliopanos < george.koliopanos@cardio-care.ch>
Description Generation of mock data from a real dataset using rank
     normal inverse transformation.
Author Andreas Ziegler [aut], Francisco Miguel Echevarria [aut, ctb],
     George Koliopanos [aut, cre]
Encoding UTF-8
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, survival
VignetteBuilder knitr
License GPL (>= 3) + file LICENSE
Depends R (>= 4.1)
Imports ggplot2 (>= 3.4.0), patchwork (>= 1.1.2), wesanderson (>=
     0.3.6.9000), Matrix (>= 1.6.1.1), ggcorrplot (>= 0.1.4.1),
     gridExtra (>= 2.3), psych (>= 2.2.9), GLDEX (>= 2.0.0.9.2),
     MASS (>= 7.3), gp (>= 1.0), stats, utils
URL https://github.com/GeorgeKoliopanos/modgo
BugReports https://github.com/GeorgeKoliopanos/modgo/issues
Repository https://georgekoliopanos.r-universe.dev
RemoteUrl https://github.com/georgekoliopanos/modgo
RemoteRef HEAD
```

RemoteSha 52273957ea132eef06448d009a9e9c08f7bf6fd1

Type Package

2 checkArguments

Contents

checl	kArguments Check Arguments	
Index		2 4
	Sigma_transformation	23
	Sigma_calculation	
	rbi_normal_transform_inv	
	rbi_normal_transform	
	multicenter_comb	
	modgo_survival	
	modgo	
	Inverse_transformation_variables	
	generate_simulated_data	
	general_transform_inv	
	generalizedMatrix	
	distr_plots	
	corr_plots	
	Cleveland	
	checkArguments	2

Description

This function is used internally by modgo to check the correctness of the arguments passed to it.

Usage

```
checkArguments(
  data = NULL,
  ties_method = "max",
 variables = colnames(data),
 bin_variables = NULL,
  categ_variables = NULL,
  count_variables = NULL,
  n_samples = nrow(data),
  sigma = NULL,
  nrep = 100,
  noise_mu = FALSE,
 pertr_vec = NULL,
  change_cov = NULL,
  change_amount = 0,
  seed = 1,
  thresh_var = NULL,
  thresh_force = FALSE,
  var_prop = NULL,
  var_infl = NULL,
```

checkArguments 3

```
infl_cov_stable = FALSE,
tol = 1e-06,
stop_sim = FALSE,
new_mean_sd = NULL,
multi_sugg_prop = NULL,
generalized_mode = FALSE,
generalized_mode_model = NULL,
generalized_mode_lmbds = NULL)
```

Arguments

data A data frame containing the data whose characteristics are to be mimicked dur-

ing the data simulation.

ties_method Method used to deal with ties during rank transformation. Allowed input: "max", "average"

or "min". This parameter is passed by rbi_normal_transform to the parameter

ties.method of rank.

variables A character vector indicating the columns in data to be used. Default: colnames (data).

bin_variables A character vector listing those entries in variables to be treated as binary

variables.

categ_variables

A character vector listing those entries in variables to be treated as ordinal

categorical variables, with more than two categories. See Details.

count_variables

A character vector listing those entries categ_variables to be treated as count

variables. Relevant only when generalized_mode = TRUE.

n_samples Number of rows of each simulated dataset. Default is the number of rows of

data.

sigma A covariance matrix of NxN (N= number of variables) provided by the user to

bypass the covariance matrix calculations

nrep Number of simulated datasets to be generated.

noise_mu Logical. Should noise be added to the mean vector of the multivariate normal

distribution used to draw the simulated values? Default: FALSE.

pertr_vec A named vector. Vector's names are the continuous variables that the user want

to perturb. Variance of simulated dataset mimic original data's variance.

change_cov Change the covariance of a specific pair of variables.

change_amount the amount of change in the covariance of a specific pair of variables.

seed A numeric value specifying the random seed. If seed = NA, no random seed is

set.

thresh_var A data frame that contains the thresholds(left and right) of specified variables

(1st column: variable names, 2nd column: Left thresholds, 3rd column: Right

thresholds)

thresh_force A logical value indicating if you want to force threshold in case the proportion

of samples that can surpass the threshold are less than 10%

4 checkArguments

var_prop A named vector that provides a proportion of value=1 for a specific binary vari-

able (=name of the vector) that will be the proportion of this value in the simu-

lated datasets.[this may increase execution time drastically]

var_infl A named vector. Vector's names are the continuous variables that the user want

to perturb and increase their variance

infl_cov_stable

Logical value. If TRUE, perturbation is applied to original dataset and simulations values mimic the perturbed original dataset. Covariance matrix used for simulation = original data's correlations. If FALSE, perturbation is applied to

the simulated datasets.

tol A numeric value that set up tolerance(relative to largest variance) for numerical

lack of positive-definiteness in Sigma

stop_sim A logical value indicating if the analysis should stop before simulation and pro-

duce only the correlation matrix

new_mean_sd A matrix that contains two columns named "Mean" and "SD" that the user speci-

fies desired Means and Standard Deviations in the simulated datasets for specific continues variables. The variables must be declared as ROWNAMES in the ma-

trix.

multi_sugg_prop

A named vector that provides a proportion of value=1 for specific binary variables (=name of the vector) that will be the close to the proportion of this value in the simulated datasets.

generalized_mode

A logical value indicating if generalized lambda/Poisson distributions or set up thresholds will be used to generate the simulated values

generalized_mode_model

A matrix that contains two columns named "Variable" and "Model". This matrix can be used only if a generalized_mode_model argument is provided. It specifies what model should be used for each Variable. Model values should be "rmfmkl", "rprs", "star" or a combination of them, e.g. "rmfmkl-rprs" or "starstar", in case the user wants a bimodal simulation. The user can select Generalised Poisson model for Poisson variables, but this model cannot be included in bimodal simulation

generalized_mode_lmbds

A matrix that contains lambdas values for each of the variables of the dataset to be used for either Generalized Lambda Distribution Generalized Poisson Distribution or setting up thresholds

Details

All variables passed to modgo should be of class double or integer. This includes the variables passed to the parameter categ_variables. The character vector variables, indicating the variables in data to be used in the simulation, should contain at least two variables. The variables in variables not present in bin_variables nor categ_variables will be treated as continuous variables.

Author(s)

Cleveland 5

Cleveland

Cleveland Dataset ('Cleveland')

Description

```
Rows: samples (303) x Columns: Variables (11)
```

Usage

```
data("Cleveland")
```

Format

A data frame

Details

Selected 11 variables from Cleveland Clinic Heart Disease Dataset (Detrano et al. (1989)). The dataset was dowloaded from the University of California in Irvine machine learning data repository (Dua et al. (2019)).

Missing values were imputed. For each continuous variable values were drawn from a normal distribution using the sample mean and standard deviation computed on the complete observations. For categorical variables values were drawn from the empirical distribution of the complete observations.

References

Detrano, R. et al. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. *The American Journal of Cardiology*, 64(5), 304-310.

Dua, D. and Graff C (2019). UCI machine learning repository. Irvine: University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml. Accessed March 20th 2023.

```
data("Cleveland", package="modgo")
```

6 corr_plots

corr_plots

Plots correlation matrix of original and simulated data

Description

Produces a graphical display of the Pearson correlation matrix of the original dataset, a single simulated dataset and also of the average of the correlation matrices across all simulations for an object returned by modgo.

Usage

```
corr_plots(
  Modgo_obj,
  sim_dataset = 1,
  variables = colnames(Modgo_obj[["simulated_data"]][[1]])
)
```

Arguments

Modgo_obj An object returned by modgo.

sim_dataset Number indicating the simulated dataset in Modgo_obj to be used in plots.

Variables A character vector indicating the columns in the data to be used in plots.

Value

A patchwork object created by patchwork::wrap_plots.

Author(s)

Francisco M. Ojeda, George Koliopanos

```
data("Cleveland",package="modgo")

test_modgo <- modgo(data = Cleveland,
    bin_variables = c("CAD","HighFastBloodSugar","Sex","ExInducedAngina"),
    categ_variables =c("Chestpaintype"))

corr_plots(test_modgo)</pre>
```

distr_plots 7

distr_plots

Plots distribution of original and simulated data

Description

Produces a graphical display of the distribution of the variables in the original and a single simulated dataset for an object returned by modgo.

Usage

```
distr_plots(
  Modgo_obj,
  variables = colnames(Modgo_obj[["original_data"]]),
  sim_dataset = 1,
  wespalette = "Cavalcanti1",
  text_size = 12
)
```

Arguments

Modgo_obj An object returned by modgo.

variables A character vector indicating the columns in the data to be used in plots.

Sim_dataset Number indicating the simulated dataset in Modgo_obj to be used in plots.

Wespalette Name of selected Wes Anderson color palette. Passed to wesanderson::wes_palette.

Text size in plot for legend, tick mark and axes labels. Passed to ggplot2::element_text.

Details

Box-and-whisker plots and bar charts are produced for continuous and categorical variables, respectively.

Value

a gtable object from package gtable.

Author(s)

Andreas Ziegler, Francisco M. Ojeda, George Koliopanos

```
data("Cleveland",package="modgo")
test_modgo <- modgo(data = Cleveland,
    bin_variables = c("CAD","HighFastBloodSugar","Sex","ExInducedAngina"),
    categ_variables =c("Chestpaintype"))
distr_plots(test_modgo)</pre>
```

8 generalizedMatrix

generalizedMatrix

Generalized Lambda and Poisson preparation

Description

Prepare the four moments matrix for GLD and GPD

Usage

```
generalizedMatrix(
  data,
  variables = colnames(data),
  bin_variables = NULL,
  generalized_mode_model = NULL,
  multi_sugg_prop = NULL
)
```

Arguments

data A data frame with original variables.

variables A vector of which variables you want to transform. Default:colnames(data)

bin_variables A character vector listing the binary variables.

generalized_mode_model

A matrix that contains two columns named "Variables" and "Model". This matrix can be used only if a generalized_mode_model argument is provided. It specifies what model should be used for each Variable. Model values should be "RMFMKL", "RPRS", "STAR" or a combination of them, e.g. "RMFMKL-RPRS" or "STAR-STAR", in case the use wants a bimodal simulation. The user can select Generalized Poisson model for Poisson variables, but this model cannot be included in bimodal simulation

multi_sugg_prop

A named vector that provides a proportion of value=1 for specific binary variables(=name of the vector) that will be the close to the proportion of this value in the simulated datasets.

Value

A numeric matrix

Author(s)

general_transform_inv 9

Examples

general_transform_inv Inverse gldex transformation

Description

Inverse transforms z values of a vector to simulated values driven by the original dataset using Generalized Lambda and Generalized Poisson percentile functions.

Usage

```
general_transform_inv(x, data = NULL, n_samples, lmbds)
```

Arguments

x A vector of z values.

data A data frame with original variables.

n_samples Number of samples you need to produce.

1mbds A vector with generalized lambdas values

Value

A numeric vector.

Author(s)

Andreas Ziegler, Francisco M. Ojeda, George Koliopanos

```
generate_simulated_data
```

Generate new dataset by using previous correlation matrix

Description

This function is used internally by modgo. It conducts the computation of the correlation matrix of the transformed variables, which are assumed to follow a multivariate normal distribution.

Usage

```
generate_simulated_data(
   data,
   df_sim,
   variables,
   bin_variables,
   categ_variables,
   count_variables,
   n_samples,
   generalized_mode,
   generalized_mode_lmbds,
   multi_sugg_prop,
   pertr_vec,
   var_infl,
   infl_cov_stable
)
```

Arguments

data a data frame with original variables.

df_sim a data frame with simulated values.

variables variables a character vector indicating which columns of data should be used.

bin_variables a character vector listing the binary variables.

categ_variables

a character vector listing the ordinal categorical variables.

count_variables

a character vector listing the count as a sub sub category of categorical variables. Count variables should be part of categorical variables vector. Count variables

are treated differently when using gldex to simulate them.

n_samples Number of rows of each simulated dataset. Default is the number of rows of

data.

generalized_mode

A logical value indicating if generalized lambda/Poisson distributions or set up thresholds will be used to generate the simulated values

generalized_mode_lmbds

A matrix that contains lmbds values for each of the variables of the dataset to be used for either Generalized Lambda Distribution Generalized Poisson Distribution or setting up thresholds

multi_sugg_prop

A named vector that provides a proportion of value=1 for specific binary variables(=name of the vector) that will be the close to the proportion of this value in the simulated datasets.

pertr_vec

A named vector. Vector's names are the continuous variables that the user want to perturb. Variance of simulated dataset mimic original data's variance.

var_infl

A named vector. Vector's names are the continuous variables that the user want to perturb and increase their variance

infl_cov_stable

Logical value. If TRUE, perturbation is applied to original dataset and simulations values mimic the perturbed original data set. Covariance matrix used for simulation = original data's correlations. If FALSE, perturbation is applied to the simulated datasets.

Value

Simulation Data Frame

Author(s)

Francisco M. Ojeda, George Koliopanos

Inverse_transformation_variables

Inverse transform variables

Description

This function is used internally by modgo. It transforms all variables to their original scale.

Usage

```
Inverse_transformation_variables(
  data,
  df_sim,
  variables,
  bin_variables,
  categ_variables,
  count_variables,
```

```
n_samples,
  generalized_mode,
  generalized_mode_lmbds
)
```

Arguments

data a data frame with original variables.

df_sim data frame with transformed variables.

variables variables a character vector indicating which columns of data should be used.

bin_variables a character vector listing the binary variables.

categ_variables

a character vector listing the ordinal categorical variables.

count_variables

a character vector listing the count as a sub sub category of categorical variables. Count variables should be part of categorical variables vector. Count variables are treated differently when using glday to simulate them.

are treated differently when using gldex to simulate them.

n_samples Number of rows of each simulated dataset. Default is the number of rows of

data.

generalized_mode

A logical value indicating if generalized lambda/Poisson distributions or set up thresholds will be used to generate the simulated values

generalized_mode_lmbds

A matrix that contains lambdas values for each of the variables of the dataset to be used for either Generalized Lambda Distribution Generalized Poisson Distribution or setting up thresholds

Value

A correlation matrix.

Author(s)

Francisco M. Ojeda, George Koliopanos

modgo MOck Data GeneratiOn

Description

Creates synthetic dataset based on real data by means of the rank-based inverse normal transformation. Data with perturbed characteristics can be generated.

Usage

```
modgo(
  data,
  ties_method = "max",
  variables = colnames(data),
 bin_variables = NULL,
  categ_variables = NULL,
  count_variables = NULL,
  n_samples = nrow(data),
  sigma = NULL,
  nrep = 100,
  noise_mu = FALSE,
  pertr_vec = NULL,
  change_cov = NULL,
  change_amount = 0,
  seed = 1,
  thresh_var = NULL,
  thresh_force = FALSE,
  var_prop = NULL,
  var_infl = NULL,
  infl_cov_stable = FALSE,
  tol = 1e-06,
  stop_sim = FALSE,
  new_mean_sd = NULL,
 multi_sugg_prop = NULL,
  generalized_mode = FALSE,
  generalized_mode_model = NULL,
  generalized_mode_lmbds = NULL
)
```

Arguments

data A data frame containing the data whose characteristics are to be mimicked dur-

ing the data simulation.

ties_method Method used to deal with ties during rank transformation. Allowed input: "max", "average"

or "min". This parameter is passed by rbi_normal_transform to the parameter

ties.method of rank.

variables A character vector indicating the columns in data to be used. Default: colnames (data).

bin_variables A character vector listing those entries in variables to be treated as binary

variables.

categ_variables

A character vector listing those entries in variables to be treated as ordinal

categorical variables, with more than two categories. See Details.

count_variables

A character vector listing those entries categ_variables to be treated as count variables. Relevant only when generalized_mode = TRUE.

n_samples Number of rows of each simulated dataset. Default is the number of rows of data. sigma A covariance matrix of NxN (N= number of variables) provided by the user to bypass the covariance matrix calculations Number of simulated datasets to be generated. nrep noise_mu Logical. Should noise be added to the mean vector of the multivariate normal distribution used to draw the simulated values? Default: FALSE. A named vector. Vector's names are the continuous variables that the user want pertr_vec to perturb. Variance of simulated dataset mimic original data's variance. change_cov Change the covariance of a specific pair of variables. the amount of change in the covariance of a specific pair of variables. change_amount A numeric value specifying the random seed. If seed = NA, no random seed is seed set. thresh_var A data frame that contains the thresholds(left and right) of specified variables (1st column: variable names, 2nd column: Left thresholds, 3rd column: Right thresholds) A logical value indicating if you want to force threshold in case the proportion thresh_force of samples that can surpass the threshold are less than 10% var_prop A named vector that provides a proportion of value=1 for a specific binary variable (=name of the vector) that will be the proportion of this value in the simulated datasets. [this may increase execution time drastically] var_infl A named vector. Vector's names are the continuous variables that the user want to perturb and increase their variance infl_cov_stable Logical value. If TRUE, perturbation is applied to original dataset and simulations values mimic the perturbed original dataset. Covariance matrix used for simulation = original data's correlations. If FALSE, perturbation is applied to the simulated datasets. tol A numeric value that set up tolerance(relative to largest variance) for numerical lack of positive-definiteness in Sigma A logical value indicating if the analysis should stop before simulation and prostop_sim duce only the correlation matrix A matrix that contains two columns named "Mean" and "SD" that the user specinew_mean_sd fies desired Means and Standard Deviations in the simulated datasets for specific

multi_sugg_prop

trix.

A named vector that provides a proportion of value=1 for specific binary variables (=name of the vector) that will be the close to the proportion of this value in the simulated datasets.

continues variables. The variables must be declared as ROWNAMES in the ma-

generalized_mode

A logical value indicating if generalized lambda/Poisson distributions or set up thresholds will be used to generate the simulated values

generalized_mode_model

A matrix that contains two columns named "Variable" and "Model". This matrix can be used only if a generalized_mode_model argument is provided. It specifies what model should be used for each Variable. Model values should be "rmfmkl", "rprs", "star" or a combination of them, e.g. "rmfmkl-rprs" or "starstar", in case the user wants a bimodal simulation. The user can select Generalised Poisson model for Poisson variables, but this model cannot be included in bimodal simulation

generalized_mode_lmbds

A matrix that contains lambdas values for each of the variables of the dataset to be used for either Generalized Lambda Distribution Generalized Poisson Distribution or setting up thresholds

Details

Simulated data is generated based on available data. The algorithm used is based on the ranked-based inverse normal transformation (Koliopanos et al. (2023)) and attempts to mimic the characteristics of the original data.

All variables passed to modgo should be of class double or integer. This includes the variables passed to the parameter categ_variables. The character vector variables, indicating the variables in data to be used in the simulation, should contain at least two variables. The variables in variables not present in bin_variables nor categ_variables will be treated as continuous variables.

Value

A list with the following components:

simulated_data A list of data frames containing the simulated data.

original_data A data frame with the input data.

correlations A list of correlation matrices. The ith element is the correlation matrix for the

ith simulated dataset. The (repn + 1)the (last) element of the list is the average

of the correlation matrices.

bin_variables A character vector listing the binary variables

categ_variables

A character vector listing the ordinal categorical variables

covariance_matrix

Covariance matrix used when generating observations from a multivariate nor-

mal distribution.

seed Random seed used.

samples_produced

Number of rows of each simulated dataset.

sim_dataset_number

Number of simulated datasets produced.

Author(s)

References

Koliopanos, G., Ojeda, F. and Ziegler A. (2023). A simple-to-use R package for mimicking study data by simulations. *Methods Inf Med*, 62(03/04), 119-129.

Examples

```
data("Cleveland",package="modgo")
test_modgo <- modgo(data = Cleveland,
    bin_variables = c("CAD","HighFastBloodSugar","Sex","ExInducedAngina"),
    categ_variables =c("Chestpaintype"))</pre>
```

modgo_survival

MOck Data GeneratiOn

Description

modgo_survival Create mock dataset from a real one by using Generalized Lambdas Distributions and by separating the dataset in 2 based in the event status.

Usage

```
modgo_survival(
  data,
  event_variable = NULL,
  time_variable = NULL,
  surv_method = 1,
  ties_method = "max",
  variables = colnames(data),
  bin_variables = NULL,
  categ_variables = NULL,
  count_variables = NULL,
  n_samples = nrow(data),
  sigma = NULL,
  nrep = 100,
  noise_mu = FALSE,
  pertr_vec = NULL,
  change_cov = NULL,
  change\_amount = 0,
  seed = 1,
  thresh_var = NULL,
  thresh_force = FALSE,
  var_prop = NULL,
  var_infl = NULL,
  infl_cov_stable = FALSE,
  tol = 1e-06,
  stop_sim = FALSE,
  new_mean_sd = NULL,
```

```
multi_sugg_prop = NULL,
generalized_mode = TRUE,
generalized_mode_model = NULL,
generalized_mode_model_event = "rprs",
generalized_mode_model_no_event = "rprs",
generalized_mode_lmbds = NULL
)
```

Arguments

data A data frame containing the data whose characteristics are to be mimicked dur-

ing the data simulation.

event_variable a character string listing the event variable.

time_variable a character string listing the time variable.

surv_method A numeric value that indicates which one of the 2 survival methods will be

used. First method (surv_method = 1): Event and no event datasets are using different covariance matrices for the simulation. Second method(surv_method = 2): Event and no event datasets are using the same covariance matrix for the

simulation

ties_method Method on how to deal with equal values during rank transformation. Accept-

able input: "max", "average", "min". This parameter is passed by rbi_normal_transform

to the parameter ties.method of rank.

variables a vector of which variables you want to transform. Default:colnames(data)

bin_variables a character vector listing the binary variables.

categ_variables

a character vector listing the ordinal categorical variables.

count_variables

a character vector listing the count as a sub sub category of categorical variables. Count variables should be part of categorical variables vector. Count variables

are treated differently when using gldex to simulate them.

n_samples Number of rows of each simulated dataset. Default is the number of rows of

data.

sigma a covariance matrix of NxN (N= number of variables) provided by the user to

bypass the covariance matrix calculations

nrep number of repetitions.

noise_mu Logical value if you want to apply noise to multivariate mean. Default: FALSE

pertr_vec A named vector. Vector's names are the continuous variables that the user want

to perturb. Variance of simulated dataset mimic original data's variance.

change_cov change the covariance of a specific pair of variables.

change_amount the amount of change in the covariance of a specific pair of variables.

seed A numeric value specifying the random seed. If seed = NA, no random seed is

set.

thresh_var A data frame that contains the thresholds(left and right) of specified variables

(1st column: variable names, 2nd column: Left thresholds, 3rd column: Right

thresholds)

thresh_force A logical value indicating if you want to force threshold in case the proportion

of samples that can surpass the threshold are less than 10%

var_prop A named vector that provides a proportion of value=1 for a specific binary vari-

able(=name of the vector) that will be the proportion of this value in the simu-

lated datasets.[this may increase execution time drastically]

var_inf1 A named vector. Vector's names are the continuous variables that the user want

to perturb and increase their variance

infl_cov_stable

Logical value. If TRUE, perturbation is applied to original dataset and simulations values mimic the perturbed original data set. Covariance matrix used for simulation = original data's correlations. If FALSE, perturbation is applied to

the simulated datasets.

tol A numeric value that set up tolerance(relative to largest variance) for numerical

lack of positive-definiteness in Sigma

stop_sim A logical value indicating if the analysis should stop before simulation and pro-

duce only the correlation matrix

new_mean_sd A matrix that contains two columns named "Mean" and "SD" that the user speci-

fies desired Means and Standard Deviations in the simulated datasets for specific continues variables. The variables must be declared as ROWNAMES in the ma-

trix.

multi_sugg_prop

A named vector that provides a proportion of value=1 for specific binary variables(=name of the vector) that will be the close to the proportion of this value in the simulated datasets.

generalized_mode

A logical value indicating if generalized lambda/Poisson distributions or set up thresholds will be used to generate the simulated values

generalized_mode_model

A matrix that contains two columns named "Variable" and "Model". This matrix can be used only if a generalized_mode_model argument is provided. It specifies what model should be used for each Variable. Model values should be "rmfmkl", "rprs", "star" or a combination of them, e.g. "rmfmkl-rprs" or "star-star", in case the use wants a bimodal simulation. The user can select Generalised Poisson model for Poisson variables, but this model cannot be included in bimodal simulation

generalized_mode_model_event

A matrix that contains two columns named "Variable" and "Model" and it is to be used for the event dataset (event = 1). This matrix can be used only if a generalized_mode_model argument is provided. It specifies what model should be used for each Variable. Model values should be "rmfmkl", "rprs", "star" or a combination of them, e.g. "rmfmkl-rprs" or "star-star", in case the use wants a bimodal simulation. The user can select Generalised Poisson model for Poisson variables, but this model cannot be included in bimodal simulation.

generalized_mode_model_no_event

A matrix that contains two columns named "Variable" and "Model" and it is to be used for the non-event dataset (event = 0). This matrix can be used only if a

generalized_mode_model argument is provided. It specifies what model should be used for each Variable. Model values should be "rmfmkl", "rprs", "star" or a combination of them, e.g. "rmfmkl-rprs" or "star-star", in case the use wants a bimodal simulation. The user can select Generalised Poisson model for Poisson variables, but this model cannot be included in bimodal simulation

generalized_mode_lmbds

A matrix that contains lambdas values for each of the variables of the dataset to be used for either Generalized Lambda Distribution Generalized Poisson Distribution or setting up thresholds

Details

Simulated data is generated based on available data. The simulated data mimics the characteristics of the original data. The algorithm used is based on the ranked based inverse normal transformation (Koliopanos et al. (2023)).

Value

A list with the following components:

simulated_data A list of data frames containing the simulated data.

original_data A data frame with the input data.

correlations a list of correlation matrices. The ith element is the correlation matrix for the ith

simulated dataset. The (repn + 1)the (last) element of the list is the average of

the correlation matrices.

bin_variables character vector listing the binary variables

categ_variables

a character vector listing the ordinal categorical variables

covariance_matrix

Covariance matrix used when generating observations from a multivariate nor-

mal distribution.

seed Random seed used.

samples_produced

Number of rows of each simulated dataset.

sim_dataset_number

Number of simulated datasets produced.

Author(s)

20 rbi_normal_transform

multicenter_comb

Modgo multi-studies

Description

Combines modgo objects from a multiple studies to a single one in order to calculate new correlations and visualise the data

Usage

```
multicenter_comb(modgo_1, ...)
```

Arguments

```
modgo_1 a list modgo object.
... multiple modgo object names.
```

Value

A modgo object/list.

Author(s)

Francisco M. Ojeda, George Koliopanos

```
rbi_normal_transform Rank-based inverse normal transformation
```

Description

Applies the rank-based inverse normal transformation to a numeric vector.

Usage

```
rbi_normal_transform(x, ties_method = c("max", "min", "average"))
```

Arguments

x a numeric vector.

ties_method character string indicating how to handle ties when computing sample ranks.

Can be any of "max", "average" or "min". This is passed to the parameter ties. method $\,$

of rank.

Details

The rank-based inverse normal transformation (Beasley et al. (2009)), transforms values of a vector of length n to ranks/(n + 1) and then applies the quantile function of the standard normal distribution.

Value

A numeric vector.

Author(s)

Andreas Ziegler, Francisco M. Ojeda, George Koliopanos

References

Beasley, T.M. and Erickson S. and Allison D.B. (2009). Rank-based inverse normal transformations are increasingly used, but are they merited? *Behavior genetics*, 39, 580-595.

Examples

```
data("Cleveland",package="modgo")
test_rank <- rbi_normal_transform(Cleveland[,1])</pre>
```

```
rbi_normal_transform_inv
```

Inverse of rank-based inverse normal transformation

Description

Transforms a vector x using the inverse of a rank-based inverse normal transformation associated with a given vector x_original. This inverse is defined as $F_n^{-1}\Phi(x)$, where F_n^{-1} is the inverse empirical cumulative distribution function of x_original and Φ is the cumulative distribution function of a standard normal random variable.

Usage

```
rbi_normal_transform_inv(x, x_original)
```

Arguments

x a numeric vector to which the inverse of a rank-based inverse normal transfor-

mation associated with x_original will be applied.

x_original a numeric vector.

Value

A numeric vector.

22 Sigma_calculation

Author(s)

Andreas Ziegler, Francisco M. Ojeda, George Koliopanos

Examples

Sigma_calculation

Calculate Sigma with the help of polychoric and polyserial functions

Description

This function is used internally by modgo. It conducts the computation of the correlation matrix of the transformed variables, which are assumed to follow a multivariate normal distribution.

Usage

```
Sigma_calculation(data, variables, bin_variables, categ_variables, ties_method)
```

Arguments

data a data frame with original variables.

variables variables a character vector indicating which columns of data should be used.

bin_variables a character vector listing the binary variables.

categ_variables

a character vector listing the ordinal categorical variables.

ties_method Method on how to deal with equal values during rank transformation. Accept-

able input: "max", "average", "min". This parameter is passed by rbi_normal_transform

to the parameter ties.method of rank.

Value

A correlation matrix.

Author(s)

Sigma_transformation 23

Sigma_transformation Correlation of transformed variables

Description

This function is used internally by modgo. It finishes the computation of the correlation matrix of the transformed variables, which are assumed to follow a multivariate normal distribution. It computes the correlations involving at least one categorical variable. For this purpose the biserial, tetrachoric, polyserial and polychoric correlations are used.

Usage

```
Sigma_transformation(
  data,
  data_z,
  Sigma,
  variables,
  bin_variables = c(),
  categ_variables = c()
```

Arguments

data a data frame with original variables.
data_z data frame with transformed variables.

Sigma A numeric square matrix.

variables variables a character vector indicating which columns of data should be used.

bin_variables a character vector listing the binary variables.

categ_variables

a character vector listing the ordinal categorical variables.

Value

A correlation matrix.

Author(s)

Index

* Generalized	Sigma_transformation, 23
<pre>general_transform_inv, 9</pre>	
* Inverse	checkArguments, 2
<pre>general_transform_inv, 9</pre>	Cleveland, 5
<pre>rbi_normal_transform_inv, 21</pre>	corr_plots, 6
* Multi-studies	distant all the 7
<pre>multicenter_comb, 20</pre>	distr_plots,7
* Normal	<pre>general_transform_inv, 9</pre>
<pre>generate_simulated_data, 10</pre>	generalizedMatrix, 8
<pre>Inverse_transformation_variables,</pre>	generate_simulated_data, 10
11	ggplot2::element_text, 7
rbi_normal_transform, 20	ggp10t2e1cment_text, /
Sigma_calculation, 22	<pre>Inverse_transformation_variables, 11</pre>
Sigma_transformation, 23	,
* data	modgo, 6, 7, 10, 11, 12, 22, 23
Cleveland, 5	modgo_survival, 16
modgo, 12	multicenter_comb, 20
modgo_survival, 16	
* generation	patchwork::wrap_plots, 6
modgo, 12	
modgo_survival, 16	rank, 3, 13, 17, 20, 22
* mock	rbi_normal_transform, 3, 13, 17, 20, 22
modgo, 12	rbi_normal_transform_inv, 21
modgo_survival, 16	Sigma_calculation, 22
* rank	Sigma_transformation, 23
<pre>generate_simulated_data, 10</pre>	018a_0. a.io. oa 010, 10
Inverse_transformation_variables,	wesanderson::wes_palette,7
11	
rbi_normal_transform, 20	
Sigma_calculation, 22	
Sigma_transformation, 23	
* transformation	
<pre>general_transform_inv, 9</pre>	
generate_simulated_data, 10	
Inverse_transformation_variables,	
11	
rbi_normal_transform, 20	
<pre>rbi_normal_transform_inv, 21</pre>	
Sigma_calculation, 22	